
Abstract. As an extention of previous work [Yamaguchi
K (1983) J Mol Structure (Theochem) 103:101], our
theoretical e�orts toward molecular materials are brie¯y
reviewed. Axial, helical and general (cone, tetrahedron,
etc) spin structures of carbon clusters, manganese oxide
clusters and iron-sulfur clusters were investigated using
the classical Heisenberg model and generalized Hartree-
Fock theory. The spin ¯ustrations in the clusters were
also studied in relation to theoretical descriptions of the
magnetism and the chemical bonds in active sites of
several enzymes. The macroscopic quantum tunneling
and coherence of spins in the manganese oxide clusters
were analyzed using the instanton model, and the
tunneling rate of spins was calculated by the coherent
state path integral method. The spin transitions induced
by an external magnetic ®eld were studied by the path
integral Monte Carlo method. The theoretical results
were explained in terms of the symmetry and broken
symmetry of the wavefunctions in the mesoscopic
molecular systems, which are intermediate in the scale
factor. The results were also applied to molecular design
of mesoscopic clusters of clusters in the intermediate and
strong correlation regime. The active control of spins is
®nally discussed from the viewpoint of functionalities in
molecular and biological materials, and technological
applications of mesoscopic molecular magnets are dis-
cussed with regard to quantum computing.

Key words: Symmetry and broken symmetry ± Spin
¯uctuation ± Spin tunneling ± Spin alignment ±
Mesoscopic molecular magnets

1 Introduction

In a previous publication dedicated to Professor Fukui
[1] we discussed the instabilities and broken symmetries

in molecular orbital (MO) descriptions of unstable
chemical bonds. Such concepts were introduced for
theoretical understanding of irregular chemical reactions
[2]. For example, the instability of chemical bonds was
extensively studied in relation to nonconcerted behavior
observed in various gas-phase reactions of unstable
species such as carbenes, nitrenes, oxygen atoms, and
multi-center biradicals. The orbital symmetry control for
1,3-dipolar reactions was often lost because of signi®-
cant biradical character of 1,3-dipolar species such as
oxygenated dipole, though the reactions are formally
symmetry-allowed [1, 3]. The orbital symmetry brea-
kings and electron localizations are also recognized for
many binuclear metal complexes [4], organometallic
conjugated systems [5], metal clusters and amorphous
materials [6], which often exhibit high catalytic activity.
The instability and symmetry-breaking of molecular
orbitals would be important in several biological sys-
tems, where strained states of active sites are stabilized
by proteins. As an example, a model of cytochrome c
oxidase was recently examined by the broken-symmetry
density functional theory (DFT) method [7].

Instabilities and broken symmetries in condensed
matter physics have been discussed in relation to various
interesting phenomena such as ferro- and antiferro-
magnetism, superconductivity and super¯uidity, etc [8].
These are closely related to the phase transitions of
metal complexes, organometallic compounds and or-
ganic materials. In past decades, intersection areas be-
tween quantum chemistry and condensed matter physics
have deen developing because of the discovery and
synthesis of many molecule-based materials such as or-
ganic metals, organic superconductors and organic fer-
romagnets. Recently quantum dynamics of spins has
been investigated in relation to macroscopic quantum
tunneling (MQT) and macroscopic quantum coherence
(MQC) in mesoscopic molecular magnets [9].

In past decades we were interested in molecular ma-
terials based on active control of spins in organic radi-
cals, ion-radicals generated by doping, transition metal
ions, etc. For example, general spin structures of organic
radicals were ®rst discussed by spin vector models using
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the classical Heisenberg model for cyclic radical systems
[10]. The spin correlation functions obtained by the
generalized Hartree±Fock (GHF) solution were also
discussed in relation to spin alignments in cyclic organic
radicals [11]. Spin polarization and spin delocalization
rules were applied to design ferro- and ferri-magnetic
organic crystals and polymers, organic ferromagnetic
metals, organometallic magnetic systems, etc [12]. The
mean-®eld theory combined with the calculated e�ective
exchange integrals was successfully utilized to estimate
the temperatures of ferro- and antiferro-magnetic phase
transitions of p-nitrophenyl nitronylnitroxide crystals.
Recently, possibilities of spin-mediated superconductors
and photo-induced superconductors were also examined
theoretically [14]. Here, we brie¯y summarize our recent
e�orts toward molecular materials belonging to the in-
tersection areas between quantum chemistry and solid-
state physics.

This paper is organized as follows. In Sect. 2, we
summarize brie¯y the theoretical background. In Sect. 3,
we introduce ab initio calculations of the e�ective
exchange integrals in the Heisenberg model. Then we
discuss spin ¯ustrations and spin tunneling in Sects. 4
and 5, respectively. We conclude with our interests for
the future in the ®eld of molecular materials in Sect. 6.

2 Theoretical background

2.1 Symmetry

Symmetry operations play important roles for char-
actrization of various phenomena in material science.
The spin-free Hamiltonians commute with the symmetry
elements of time-reversal (T), spin-rotation (SR), point
group (PN ) and permutation (SN ) group [15]. Hence,
these four symmetry operations are useful for consider-
ation of the relations between solutions of several model
Hamiltonians. The quantum Heisenberg Hamiltonian
involves only the spin variable. Therefore, it can be
completely characterized by the SN group. Since, in the
case of spin clusters, various valence-bond (VB) struc-
tures belong to irreducible representations of the SN
group, the spin couplings between the components can
be expressed in terms of the SN group [16]. The classical

Heisenberg model, on the other hand, treats spin
moments whose mutual directions are utilized to express
spin structures in the clusters. The magnetic point group
MN will be useful for their characterization: MN �
HN � T �PN ÿ HN �, where HN is a subgroup of PN [17].

The GHF solution is given by general spin orbitals
(GSO), which are characterized by three di�erent sym-
metry operations: T , SR and PN .

/i � u�i a� uÿl b �1�
Therefore, any orbital set belongs to the irreducible
representation of a subgroup of the direct product
group, T � SR � PN [18]. In most cases, the ground GHF
spin orbitals have the full symmetry of the direct group.
Thus in GHF theory, spin alignments can be character-
ized by both spin (T � SR) and space (PN ) symmetries.
An extended HF wavefunction can be constructed by
use of the direct product group G � SN � T � SR � PN
[19]. The group-theoretical relationships between solu-
tions of various model Hamiltonians were already
shown in the cases of iron-sulfur clusters involved in
ferredoxins [20] and vanadium-oxide clusters [21]. The
phase symmetry (/) should be considered for the
Hartree±Bogoliubov solution responsible for supercon-
ductivity [22]. The number density projection is neces-
sary for the solution to recover the broken symmetry of
the particle number, N , in ®nite systems [19].

2.2 Correlation corrections

MO calculations are feasible for relatively large clusters
even at the ab initio level. We ®rst obtain stable HF and/
or Hartree±Bogoliubov or density functional solutions
for clusters under investigation. The model (active) space
is constructed from occupation number and natural
orbitals (NO) of these solutions [23]; for example
unrestricted Hartree±Fock (UHF) NO (UNO), GHF
NO, DFT NO. In order to obtain dynamical correlation
corrections, these NO are utilized for basis functions
(kets) of proper computational methods, which are CI,
many-body perturbation [24], coupled cluster (CC) [23]
and path integral Monte Calro (PIMC) [25] procedures.
For example, UNO CASCI, UNO CASSCF and UNO
CASPT2 methods were applied to elucidate an impor-

Fig. 1. Various models, sym-
metry operations �T ; SR; S; SN �
and the interrelationships
among the models on the basis
of group theory
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tant role of electron correlation for e�ective exchange
interactions between open-shell species [26]. The UNO
PIMC method was useful for ab initio quantum
simulation of spins under an external magnetic ®eld at
a ®nite temperature [27]. The details of these computa-
tional techniques are given in Refs. [25, 27]. In this
paper, we brie¯y summarize key aspects relating to spin
alignments in the following section.

2.3 Spin structure and Heisenberg model

Notations of spin structures are brie¯y explained by
using three- and four-centered systems [21]. Figure 2
illustrates schematically helical and torsional spin struc-
tures, which have 2D and 3D spin components, respec-
tively. The HF solution with the 1D spin structure is
called the axial spin density wave (ASDW), which is
equivalent to the UHF solution in quantum chemistry.
The HF solutions with the 2D and 3D spin structures are
denoted as the helical SDW and the torsional SDW,
respectively [18].

Before the construction of GHF solutions, the clas-
sical Heisenberg model provides possible spin alignments
characterized by the magnetic group �T � S� [21, 28].
H � ÿ

X
2 JabSaSb cos hab �2�

where hab means the angle between spin vectors as shown
in Fig. 2 and Sc �c � a; b� is the magnitude of spin. Since
spin alignments often have magnetic symmetries, spin
alignment rules are described in terms of the magnetic
group. The magnetic group notations of triangular and
cone-type spin alignments in Fig. 2 are given in our
previous papers [10, 15, 19].

The e�ective exchange integrals �Jab� in Eq. (2) have
been experimentally determined by measurement of the
magnetic susceptibility. On the other hand, it can be
calculated by the combination of the GHF solution with
the Heisenberg model. The GHF solution is generally
given by a Slater determinant consisting ofGSO in Eq. (1)

U � j/1/2....../i....../nj : �3�
Since the GHF solution involves many spin components
characterized by S2 and Sz operators, it can be expanded
by spin-adapted wavefunctions [19] as

U �
X

C�S;Mz��U�S;Mz� ; �4�
where C�S;Mz� denotes a fraction of the wavefunction
with the S and Mz eigenvalues.

Assuming energy splittings obtained by the Heisen-
berg model for spin states (S) in Eq. (4), we can have
the following simple relation on the basis of the spin-
projection procedure [4]

Jab ��LSE�GHF-X� ÿ HSE�UHF-X��=
�HShS2�UHF-X�i ÿ LShS2�GHF-X�i� �5�

where LS and HS mean the lowest spin and highest spin
states, respectively, and ZE�Y� and ZhS2�Y�i denote,
respectively, total energy and total spin angular mo-
mentum of the spin state Z by the solution Y. X in
Eq. (5) means Mùller-Plesset (MP) perturbation and CC
methods as post GHF(UHF) approximations to include
dynamical correlation e�ects [29]. Since the GHF
solution often reduces to UHF(ASDW) in the LS state
for the case of 1D spin structure, the Jab value can be
calculated within the UHF approximation as illustrated
in Fig. 3A. The spin-polarized density functional
methods are also e�cient in this situation [30]. On the
other hand, the GHF solution is necessary for the LS
state in more general cases such as 2D and/or 3D spin
structures, as shown in Fig. 3B.

3 Ab intio calculations of Jab values

3.1 Superexchange interactions

In this section, we consider superexchange interactions
[31] in several isoelectronic species shown in Fig. 4. The
sulfur ylides and/or oxygenated dipoles (1) with planar
conformations are well-known 1,3-dipolar compounds
with a singlet ground state [3]. The reactivity of these
species was investigated in an earlier paper [1]. Here, we
consider their electronic structures from the viewpoint of
superexchange interaction in molecular magnetism. The
direct exchange interaction between the terminal p
radicals in the biradical structure (2) is rather weak
because of the long distance as shown in Fig. 4, leading
to quasi-degeneracy between singlet and triplet con®g-
urations. However, electron transfer from the sulfur
(or oxygen) atom to the left or right radical orbital is
feasible to provide zwitterionic structures 3 and 4. The
singlet state is therefore described by the superposition
of these three con®gurations [3]. This con®guration-
mixing stabilizes the singlet state: the strong p bond
between the cation radical of the central hetero atom
and the terminal radical is formed in the case of a
zwitterion because of the strong pp-pp overlap. The

Fig. 2A±C. Coordinate axes
for helical and torsional spin
structures. A illustrates a helical
spin structure for three spin
systems. B and C depict spin
structures with the cone- and
top-type symmetries, respec-
tively
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stabilization of the low-spin state by this interaction is
often called the superexchange mechanism [31].

The heroatoms in 1 can be used as antiferromagnetic
couplers in organic magnetic olygomers and polymers.
Such possibilities are discussed in detail in Sect. 6. The
transition metal oxides (MOM) (M=Cu(II), Ni(II),
Fe(III), etc) (5) examined previously [4] also have low-

spin ground states. In fact, these species have dp-pp-dp
type HOMOs and LUMOs as illustrated by 6 in Fig. 4,
though these MOs are actually symmetry-broken be-
cause of the strong electron correlation as described by
the di�erent-orbitals-for-di�erent-spins as shown by 7 in
Fig. 4 [31].

w�HOMO � cos hwHOMO � sin hwLUMO �6�
Other dAp conjugated bonds for MOM are more or less
localized, and the Heisenberg model can be applied to
describe e�ective exchange interactions between mag-
netic ions.

We performed ab initio UHF calculations of MOM
by using the Takewaki-Huzinaga MINI basis set [32] to
estimate Jab values in Eq. (5) [4]. Here, their MIDI plus
Hay's di�use d-basis sets, [533(21)/53(21)/(411)] for
transition metal ions and MIDI plus di�use sp orbitals
for anion parts, were employed for re-examination of
previous results. As an example, let us consider the linear
Mn(II)OMn(II) (5a) dimer where S � 5=2 for Mn(II). In
this case, the Jab value is given by the orbital-averaged
value, Jab �

P
Jij=25. The potential curve and Jab values

obtained by the above method are shown in Fig. 5. From
Fig. 5, the optimized MnAO distance is about 1.84 AÊ ,
and the Jab value at this distance is about ÿ4 cmÿ1.
However, the sign of Jab changes at R � 1:9 AÊ ; it be-
comes positive (ferromagnetic) in a R region further than
1.9 AÊ . Thus the spin crossover occurs in this system. On
the other hand, the magnitude of the Jab value increases
sharply with decrease of the MnAO distance as shown in
Fig. 5, since antiferromagnetic interaction becomes
strong because of the superexchange mechanism. Judg-
ing from the present result, the previous results [4] ob-
tained for MOM using the MINI basis set are
qualitatively correct.

3.2 Correlation corrections

The precursor of the high-temperature superconductor
[33], La2CuO4 has an antiferromagnetic insulator con-
structed of the Cu(II)OCu(II) (5b) bond. This compound
is isoelectronic to K2CuF3 and K2NiF4 crystals, which
have the 2D antiferromagnetic sheet. We extracted the
linear binuclear systems MXM [M � Cu(II), Ni(II) and
Mn(II)] as the model clusters [34]. The e�ective exchange
integrals for the binuclear systems were calculated using
Eq. (5). To this end, UHF MP computations using the
above-mentioned triple-zeta basis set were carried out. It
was found that the calculated Jab values at the optimized
M-F distances are ÿ56;ÿ12 and ÿ1 cmÿ1, respectively,
for Cu(II), Ni(II) and Mn(II) in the MFM3� (5c) system.
On the other hand, the corresponding values by
approximately spin-projected (AP) UMP4 (2) methods
were ÿ134 �ÿ111� and ÿ22 (20) cmÿ1. These values are
consistent with the experimental values (ÿ132;ÿ36 and
ÿ3 cmÿ1) for the Cu(II), Ni(II) and Mn(II) ¯uorides
with the K2NiF4-type structure [35]. The correlation
corrections are thus important for quantitative calcula-
tions of superexchange interactions between transition
metal ions via a ¯uoride anion.

Fig. 4. Structures of sulfur ylides and/or oxygenated dipole (1) and
transition metal oxides (5). A biradical structure and zwitterionic
structures are expressed by 2, 3 and 4, respectively. 6 illustrates the
symmetry-adapted dp-pp-dp HOMO and LUMO. The broken
symmetry MOs described by the di�erent-orbitals-for-di�erent-
spins are shown in 7. 8 and 9 denote the trimer and olygomer with
the eleven magnetic sites, respectively

Fig. 3A, B. Approximate spin projection (AP ) schemes for unre-
stricted Hartree±Fock �UHF � and generalised Hartree±Fock
�GHF � solutions. Energy levels for AP-UHF and AP-GHF are
illustrated by using the size of spin �S� and the e�ective exchange
integral �J� in A for 1D spin structure and in B for 2D and 3D spin
structures, respectively
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Here, APUMPn calculations were carried out for the
Cu(II)OCu(II) (5b) unit, which is the simplest antifer-
romagnetic unit in La2CuO4. The potential curves and
Jab values by APUMPn methods are illustrated in Fig. 6.
The Jab values by APUHF and APUMP4(2) are, re-
spectively, ÿ250 and ÿ800 cmÿ1 at the optimized CuAO
distance. The latter value is consistent with the experi-
mental value (ÿ1000 cmÿ1) for the CuO chain in various
cupurates [36]. The magnitudes of the calculated Jab
values for Mn(II) and Cu(II) oxides are quite di�erent,
and this tendency is parallel to the experiments for
transition metal oxides. The present example clearly
indicates an important role of dynamical correlation
corrections for the UHF solution to obtain reasonable
Jab values for transition metal oxides.

3.3 Size-consistent spin projection

Recently many magnetic clusters have been synthesized,
and ab initio computational methods are applied to the
systems. For this purpose, it is noteworthy that the size-
consistency condition should be retained after spin
projection, since polyradical species of our present
concern have over ten spin sites. Since total energies of
the HS UHF and LS GHF solutions correspond to those
of the Heisenberg models, respectively, the energy gap
can be used to estimate e�ective exchange integrals (Jab)
for uniform linear chains in Fig. 4 [37] as

Jab�Z� � �LSE�Z� ÿ HSE�Z��=D�ZI� ; �7�
where,

D�ZI� � 4�N ÿ 1�SaSb �8�
and Z � GHF(UHF) or DFT and N is the number of
spin sites in the clusters under consideration. Sa and Sb

are sizes of spin at sites a and b. The energy gain by the
spin projection can be estimated by Eqs. (7) and (8),
since Jab(Z) is determined even for larger systems. If the
electron correlation is taken into account under the

Fig. 5A. Variations of total energies for the low (�) and high (�)
spin states and B variation of Jab values of Mn(II)OMn(II) with
Mn-O distance. The Jab value at the optimized Mn-O distance is
depicted

Fig. 6A. Variations of the calculated Jab values by UHF, UMP2
and UMP4 and B variation of total energies for the low and high
spin states of Cu(II)OCu(II) by UMP4 with Cu-O distance
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GHF(UHF) approximation, the e�ective exchange inte-
gral by GHF(UHF) in Eq. (7) is replaced by that of
GHF-X [X � MP, CCSD, CCSD(T)].

Jab�GHF-X� � �LSE�GHF-X� ÿ HSE�UHF-X��=D�ZI� :
�9�

On the other hand, the spin projection of the GHF-X
wavefunctions in the intermediate correlation regime is a
di�cult task, since orbital overlaps between radical
orbitals are signi®cantly large. The LoÈ wdin-type spin-
projection scheme [38] is utilized for this purpose;
however, it often provides wrong Jab values because
of the approximations introduced [38]. Alternately,
approximate spin projections [3, 29, 30] are feasible for
G(U)HF-based and spin-polarized DFT methods to
calculate potential curves for dissociations from near
closed-shell to the localized limit. To this end, we have
considered an approximate but size-consistent spin-
projection procedure, where the denominator in Eq. (7)
is modi®ed so as to reproduce the extreme values of the
total spin angular momentum as [37]

D�ZII� � HShS2i�Z� ÿ LShS2i�Z�
ÿ Sag�N��LShS2i�Z� ÿ Sr�Sr � 1�� ; �10�

where

g�N� � �N ÿ 2�2=N �N > 2 and even numbers�; or

(11a)

� �N ÿ 3� �N > 3 and odd numbers�; (11b)

and Z � UMP(GMP), UCC(GCC) or DFT, and Sr

denotes the exact spin angular momentum for clusters
under discussion.

Sr � n�Sa ÿ Sb� �N � 2n�; or (11c)

Sr � n�Sa ÿ Sb� � Sa �N � 2n� 1� : (11d)

The e�ective exchange integral by the AP-UMP(GMP),
AP-UCC(GCC) and AP-DFT methods is, therefore,
given by

J�AP-Z� � �LSE�Z� ÿ HSE�Z��=D�ZII� : �12�
The J(AP-Z) value almost reduces to that of Eq. (7) in
the strong magnetic region, while it becomes a theoret-
ical parameter for spin projection in the intermediate
and strong overlap regions, where spin contamination
e�ects in UHF and spin-polarized DFT wavefunctions
are more or less decreased.

3.4 Linear clusters of 1,3-biradicals

Earlier [1], we throughly examined the biradical charac-
ter of 1,3-dipolar species [3]. Here, let us ®rst consider
dimers, trimers, and clusters (N � 11) of 1,3-dipolar
species as illustrated in Fig. 4. The e�ective exchange
interactions between methylene groups via the oxygen
(1b) or the sulfur (1c) atom in the dimer were calculated
from Eqs. (7) and (12) using total energies of the LS
singlet and the HS triplet states of 1 by the UHF/6-31G*

method. Table 1 summarizes the results calculated using
the 6-31G* basis set. The calculated Jab values were
negative (antiferromagnetic) according to all the meth-
ods examined here. The magnitudes of Jab(UHF) by
Eq. (7) and Jab(APUHF) by Eq. (12) are quite similar,
showing that the orbital overlaps between the magnetic
orbitals are small. However, the Jab(APUHF) values are
di�erent from the corresponding Jab values by UNO
CASSCF, which utilizes two active orbitals and two
active electrons f2; 2g [23, 29]. On the other hand, the
AP-DFT method approximately reproduces the CA-
SSCF results. The spin-projection e�ect is remarkable
for DFT, indicating that the orbital overlap between
magnetic orbitals is relatively large because of the
superexchange mechanism. This in turn indicates that
UHF underestimates the superexchange interaction,
and therefore should be improved by the MP and CC
corrections [29].

Next, we examined the trimer (8) as illustrated in Fig.
4 to elucidate the e�ect of the next nearest Jac value. The
spin-projection e�ect is remakable for 8. The Jab value
for 8 becomes smaller than the corresponding Jab values
for the dimer (1). This means that the next-nearest
neighbour exchange integral (Jac) should be taken into
account for this species. In fact, the simple relation
Jab(trimer)=Jab(dimer) � 12=17 was derived if the Jac
value was included for the Heisenberg model. The scaled
Jab values for 8 are close to the Jab values for 1 as shown
in parentheses in Table 1.

The linear cluster (9) composed of 11 radical sites in
Fig. 4 was examined by the UHF and DFT/6-31G*
method. The total energies of both the LS doublet and
HS 13th multiplet (S � 11=2) states of 9 were calculated.
From Table 1, both Jab values by UB3LYP and UBLYP
are negative in sign, showing antiferromagnetic spin
alignment. On the other hand, the UHF calculations
predict the ferromagnetic exchange interaction, showing
the necessity of the MP and CC corrections [29]. The
scaling factor for the Jab value (N � 11) is about 1/2 if the
next-nearest Jac value is included for modeling by the
Heisenberg model. Therefore the scaled Jab values are

Table 1. E�ective exchange integrals for oligomers of 1,3-dipolar
species by unrestricted Hertree±Fock(UHF) and density functional
theory methods

System CAOAC CASAC

None APa None AP

Dimer UHF )160 )155 )915 )880
UNO
CASSCF{2,2}

)1172 )2188

UB3LYP )2719 )2135 )3144 )2455
UBLYP )4375 )2822 )4589 )2902

Trimer UHF )30 )30 )62 )61
UB3LYP )2094 )1738 )2157 )1814

()3056) ()2570)
UBLYP )3398 )2500 )3116 )2319

()4414) ()3285)
11 mer UHF 66 63 )365 )372

UB3LYP )1576 )876 )1471 )867
UBLYP )2680 )1050 )2175 )905

aApproximate spin projection
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similar in the clusters. The present numerical results
conclude that the AP-DFT method is useful for practical
computations of Jab values for strongly exchange coupled
magnetic clusters, though MP and CC calculations, or
CASSCF plus CASPT2 calculations are desirable for
large clusters [30]. In fact, DFT(BLYP) often overesti-
mates the stability of low-spin states [30]. Modi®cation of
the hybrid method (B2LYP) is necessary to reproduce the
UCC and/or CASPT2 results for small magnetic model
compounds, and then the modi®ed B2LYP (MB2LYP)
can be applied to related large magnetic systems.

4 Spin ¯ustration

4.1 Classical Heisenberg models

The Heisenberg model can be applied to multicenter
polyradicals which are insulators from the viewpoint of
conductivity [21]. We have considered only the nearest-
neighbor e�ective exchange integrals: this approxima-
tion is reliable at least for qualitative purposes. The
Heisenberg model was successfully applied to derive
selection rules for radical reactions based on the VB
concept [28]. On the other hand, the Si � Sj term is
nothing but the spin-correlation function in solid-state
physics, and the arrow the notation ("# or "") is a
classical vector representation of singlet or triplet spin
correlation between spins at the ith and jth sites [11].
Then we have a classical version of the Heisenberg
model given by Eq. (2). It was already applied to derive
general spin structures of organic radicals [10]. Now it is
applied to obtain pictorial understanding of spin ¯ust-
ration, which is of current interest in relation to spin-gap
and spin-mediated superconductivity [14, 36].

The spin alignments for multicenter polyradicals are
described by the spin-vector model, since the present
purpose is limited to obtaining qualitative pictures of
spin ¯ustrations [36]. Let us consider the Heisenberg
model for the three-sites three-spins f3; 3g system. We
can imagine linear H3 radicals and allyl radicals as
typical examples of this f3; 3g group [10]. From Eq. (2),
the ground spin structure is parallel (high-spin) and
antiparallel (low-spin), respectively, depending on posi-
tive and negative Jab values as illustrated in 10 and 11 in
Fig. 7. The cyclization of this linear system to the tri-
angular system entails variations of spin structures from
10 to 12 and from 11 to 13. The triplet pair is formed
between sites 1 and 3 even in the low-spin structure 13
for which J13 < 0. Other spin structures such as 13 are
also allowed for the low-spin state, showing the so-called
spin ¯ustration among possible three structures.

The more general spin structure 15 is possible at the
triangular conformation, for which the hij value in Eq.
(2) is 120� [10]. Penny's bond order (cos hij) becomes
ÿ1=2 for 15, showing that the singlet spin coupling be-
comes the maximum (ÿ3=2�: note that it is ÿ1 for 13
and 14 because of spin frustration. It represents the spin
structure for the transition state of exchange-forbidden
free-radical reactions [11]. However, such helical spin
alignments have not yet been realized in the case of
molecule-based magnets.

Next, let us consider the four-sites four-spins f4; 4g
system. The H4 radical and Cu4O4 core in cupric oxides
with the D4h conformation has a low-spin ground state
with antiparallel spin alignment (16) because of negative
Jab values [21]. On the other hand, the high-spin, more
exactly ferrimagnetic spin, structure (17) is predicted for
the H4 and many other f4; 4g systems with the D3h
conformation even though J < 0. The helical spin
structure (18) is expected for a butter¯y shape. As shown
in Fig. 1, the corresponding GHF and universal MO-VB
solutions for 15 and 18 can be constructed as described
in Refs. [15, 21]. Here, we discuss only spin ¯ustrations
in hydrocarbon clusters and manganese oxide clusters
within the spin-Hamiltonian models as shown below.

4.2 Applications to hydrocarbon polyradicals

Spin alignments (10±18) in Fig. 7 have been applied to
predict ground spin states of simple hydrocarbon
polyradicals. Some of them are depicted for explanation
in Fig. 8. 11a and 15a represent the ground spin
structures of allyl and cyclopropenyl radicals, respec-
tively, since Jab is negative because of the pp-pp overlap.
16a and 17a describe the singlet and triplet ground states
of cyclobutadiene and trimethylenemethane, respective-
ly. 18a corresponds to a helical spin structure for the
diamond shape of the C4 unit: it is noteworthy that no
triplet site exists in this general spin alignment, though
it appears at the 1,3-pair if axial structure is assumed.
19 and 20 show the high-spin and low-spin ground states
of planar bis(methylene)cyclobutadiene. The rotation of

Fig. 7. Spin structures derived by the classical Heisenberg models
for various spin systems. 10±15 illustrate spin structures for three-
sites three-spins systems. Solutions for four-sites four-spins systems
are shown in 16, 17 and 18
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terminal radical group(s) is essential to induce the spin
crossover from low-spin to high-spin in the case of 20. 21
predicts the low-spin ground state of planar tetra(meth-
ylene)ethylene, showing that internal rotation around
the central CAC bond is crucial for the high-spin ground
state.

The local triplet site appears in the axial spin struc-
ture 22 for fulvene, while the general spin structure 23
involves only the singlet-type pair because of spin ¯ust-
ration. 23 is regarded as a coupled structure of methyl
and cyclopentadienyl radicals; the latter has the pen-
tagonal general spin structure. The general spin structure
24 is also predicted for heptafulvene, since cycloheptenyl
radical has the D7h general spin structure. Thus nonal-
ternant hydrocarbones without bond alternations are
expressed by combinations of general spin structures

(15a, 18a, 23 and 24) under the vector representation of
spins. This implies that these species should exhibit
paramagnetic susceptibilities because of the contribution
of triplet-coupled singlet components (""##) involved in
general spin structures. Bond alternations are therefore
inevitable for the species to suppress such contributions,
and tight singlet pairs are formed as illustrated in 22,
guaranteeing diamagnetic susceptibility. Thus, we must
consider nonuniform Heisenberg chains for nonaltern-
ant hydrocarbons as

ĤNU � ÿ2
X

Ji�i�1�Si � Si�1 ÿ 2
X

Ji�iÿ1�Si � Siÿ1 �13�
where jJi�i�1�j � jJi�iÿ1�j. Since C60 involves the ®ve-
membered ring, it is described by a general spin structure
constructed of superposition of the D5h helical spin
alignment if bond alternation is not considered. How-
ever, it actually occurs in C60 to provide ole®nic double
bonds as shown in 25 which are reactive to several
reagents. Electron doping of C60 may entail such spin
¯ustration since the bond alternation e�ect is relaxed
[39].

4.3 Spin ¯ustrations in manganese oxide clusters

Judging from the magnitude of spin density calculated
for Mn(II)OMn(II), a spin Si on a manganese ion could
be regarded as a localized spin vector in order to obtain
a simple expression of spin ¯ustration; the magnitude of
spin Si in Eq. (2) is as follows, Si � 3=2 for the Mn(IV)
ion and Si � 2:0 for the Mn(III) ion in manganese-
oxygen clusters. It will be shown that the spin vector
model is useful at least as a ®rst step for the theoretical
understanding of complex exchange couplings of man-
ganese spins in manganese-oxygen clusters. Table 2
summarizes the typical manganese clusters, observed
e�ective exchange integrals and calculated h values from
Fig. 3. Theoretically proposed spin structures on the
basis of the classical Heisenberg model [10, 28] are
illustrated in Fig. 9.

4.3.1 Cyclic manganese oxide clusters

The binuclear manganese acetate complex (5d) with the
Mn(II)OMn(II) core has a positive J12 value, and

Fig. 8. Spin structures for hydrocarbon systems with linear,
triangular, square planar, butter¯y and other structures

Table 2. Structure and spin properties of manganese oxide clusters

No. System J hij Alignments Ref.

5d [Mn(III)2O(O2CMe)2]L J = 9 h � 0� axial 40
5e Mn(IV)4O6(bipy)6 (CIO4)4H2O J1 = )88, J2 = )134 h � ÿ180� axial 41
13b [Mn(II)Mn(III)2O(O2CMe)6(pyr)3](pry) J1 = )8.3, J2 = )5.1 h12 � h�; h13 � 180� axial 44
15a [Mn(III)O(O2CMe)(pyr)3]3(CIO4)2 J1 = J2 = )10 h � 120� triangular 43
15b [Mn(IV)3O4(OH)(bpea)3](CIO4)3 J1 = )11, J2 = )76 h � 94:15� helical 45
15c [Mn(IV)3O4(H2O)4(bpy)4]

4+ J1 = )49, J2 = )91 h � 105:62� helical 45
16b [Mn(III)Mn(IV)O2)2(tphn)2]

4+ J1 = )101.1, J2 = )8.4 hij � 90� axial 46
17b [Mn(II){Cu(II)(oxpn)3}](CIO4)2 J = )13.3 hij � 120� axial 47
18b [Mn(III)4O2(O2CMe)7(bipy)2]

+ J1 = )7.8, J2 = )23.5 h13 � 99:6� helical 48
18c [Mn(II)2Mn(III)2O2(O2CMe)6(bipy)2] J1 = )1.97, J2 = )3.12 h13 � 113:2� helical 51
32a [Mn(IV) Mn(III)3(l-O)3(l-Cl)] J1 = 11.3, J2 = )13.1 h12 � 0�; h34 � p axial 61
33a [Mn(II)4Te4] (cubane) J = )21.7 hij � 109� Td 54
33b [Mn(II)4(l-OR)4] (cubane) J1 = )2.5 ~ 0.25 hij � 109�or h12 � h34 Td 52
35a [Mn(IV)4O6]

4+ (adamantane) J = 6.9 h12 � h34 � 0� axial 53
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exhibits parallel spin alignment (26), where
S12 � S1 � S2 � 5 [40]. On the other hand, the

[Mn(IV)(l2 ÿO�2]4� cores exhibit strong antiferromag-
netic exchange interactions (J12 � ÿ80 to ÿ150 cmÿ1).
The Mn(IV) tetramer (5e) exhibits an axial spin structure
(27) [41]. The Heisenberg model for Mn3 systems with
the C2v symmetry in Fig. 2 is given by

Ĥ � ÿJ1�S2
T ÿ S2

12� ÿ J2S2
12 �14�

where ST � S1 � S2 � S3 is the total spin state,
J13 � J23 � J1 and J12 � J2. From Eq. (14), the following
conditions can be obtained for the cluster [42].

sin h13 � 0 �15�
cos h13 � ÿS3J1=2S2J2 �S1 � S2� ; �16�

where

h13 � ÿh23 or h13 � l80ÿ h23 : �17�
The conditions (15) and (16) give low-spin axial spin
structures 13 and 14. For example, Fig. 9 illustrates the
axial spin structure (13b) for the [Mn(III)2Mn(II)
O(O2CMe)6] core [43]. The total energies for 13 and 14
are independent of the easy axis of spins and are given by

E�13� � ÿ4S1S3J1 � 2S1S2J2 �18�
E�14� � ÿ2S1S2J2 �19�
The more general (helical) solution (15) is derived from
Eq. 16. The structure 15 in Fig. 7 is regarded as the
triangular spin arrangement discussed previously [10,
20]. All the spin pairs in 15 exhibit singlet-type spin

Fig. 9. Spin structures for
manganese oxide clusters with
linear triangular, cubane, ada-
mantane and other structures
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coupling in contrast to the axial structures, for which
one of the spin pairs is triplet-type. Therefore 15 plays a
crucial role for a VB description of antiferromagnetic
exchange couplings of spins in the cyclic maganese-
oxygen clusters. The total energy for 15 is given by
Eqs. (16) and (17) as

E�15� � ÿS2
3J2

1 =J2 ÿ 2 J2S1S2 �20�
The three Mn(III) ions in 15a with the singlet ground

state (ST � 0) are magnetically equivalent; S1 � S2 �
S3 � 2 and J12 � J23 � J31 � J [43]. Then all the angles
for 15 are 120� in the D3h form. 15 is more stable by SJ
than the axial structures 13 and 14 at the geometry. This
tendency holds even for the C2v form under the following
condition:

jS3J1j < j2S2J2j : �21�
The condition is satis®ed even in the case of a Jahn±
Teller distorted cyclic Mn3 system, but the reverse
relation to Eq. (21) is expected for bent and linear Mn3
systems, for which the axial structure 13 in Fig. 7 is
found to be the ground spin structure. The condition
(Eq. 21) is satis®ed in the cases of the mixed valence
(MV) Mn3 complex 13b [44]; it is noteworthy that the
e�ective exchange integral involving the electron delo-
calization B, namely Jeff � Jab � B=Sa, is used for the
MV pair in the present model. The helical spin structures
for 15 are completely characterized by three variables
(S12; S3; ST). The total spin state (ST) is variable with the
S12 value if S3 is ®xed. For example, the low-spin doublet
(ST � 1=2) state is given by 15(ÿ1; 3=2; 1=2). Figure 10
illustrates the corresponding spin structures in the case
of the Mn(IV)3 (S3 � 3=2) cluster.

Recent ESR experiments [45] have shown that the
ground states of the Mn3 complexes for 15b and 15c are
quintet and doublet, respectively, and these are expres-
sed by 15(0, 3/2, 3/2) and 15(ÿ1; 3=2; 1=2). By using the
observed Jab values, h13�ÿh23� and h12 values are calcu-
lated to be 94� and 106�, respectively. The classical no-

tations for 15b and 15c are compatible with the quantum
vector models in Fig. 10.

The square planar Mn(II)2Mn(IV)2 complex (16b)
with ST � 1 [46] has an axial spin structure as shown
in Fig. 9. The D3h complex (17b) with ST � 1 [47] also
exhibits an axial structure like trimethylenemetane. The
butter¯y Mn4 clusters are regarded as an edge-shared
bi-triangle structure, where J13 � J23 � J14 � J24 � J1,
J12 � J2 and J34 � 0. Then the Heisenberg Hamiltonian
is given by

Ĥ � ÿJ1�S2
T ÿ S2

12 ÿ S2
34� ÿ J2S2

12 ; �22�
where ST � S12 � S34 and S34 � S3 � S4. Possible lower
spin structures are easily derived like the results for
triangles as illustrated in Fig. 10. The butter¯y complex
18b with ST � 3 [48] has a helical spin structure
9�ÿ1; 4; 3�. In fact, h is calculated to be 100�, while it
is 113:2� for the MV butter¯y complex 18C with ST � 1,
[48], namely 9�ÿ3; 4; 1�. Thus the quantum and classical
representations are consistent, expressing the spin ¯ust-
ration state.

The cubane-type and adamantane-type Mn4 com-
plexes have four spin vectors as shown in Fig. 2.
The Heisenberg Hamiltonian for them is therefore
given by

H � ÿ2RJpqSpSq cos hpq �p; q � 1; 2; 3; 4� ; �23�
where

cos hpq � cos h12=2 cos h34=2 �p � 1; 2; q � 3; 4� : �24�
From Eqs. (23) and (24), the two di�erent axial type
arrangements 28 and 29 are obtained as illustrated in
Fig. 11. Interestingly, the more complex solutions with
2D spin modulations are also feasible. Fig. 11 illustrates
schematically their spin structures. 30 is regarded as
one of the helical (screw) spin structures discussed by
Yoshimori [49] and Nagamiya [50]. Furthermore, the
cone-type spin structure 31 [10, 20] results as the most
general spin alignment under the assumption that the
magnitude of all the spins is equivalent.

cos hpq � ÿ cos2 h=2; h � h12 � h34 �25�

Fig. 10. Vector models (15) for three Mn(IV) �Sa � 3=2� systems
with the quantum spin states �S12; S3; ST�, where S12 is given by the
subtotal spin �S1 � S2�, and vector models (9) for the four Mn(III)
�Sa � 2� systems with the quantum spin states �S12; S34; ST�

Fig. 11. Four di�erent axial (28, 29, 32, 35), helical (30), cone (31)
and top (33, 34) type spin alignments for four Mn4 complexes,
where oxygen anions are neglected
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The total energies of axial and helical solutions were
calculated on the basis of the exchange integrals (see
Table 2) observed for the manganese pairs.

The top-type Mn4 complex was also examined. The
three Mn(III) ions are magnetically equivalent in this
case. Then we can assume the following relations
without loss of generality: h12 � h23 � h31 and
h14 � h24 � h34, as illustrated in Fig. 2. The stationary
conditions for Eq. (16) are easily obtained as

sin h14 � 0 �26�
cos h14 � ÿJ1S4=3J2S1 ; �27�
where

cos h12 � 1=2�3 cos h14 ÿ 1� �28�
The low-spin axial (32) and high-spin axial (35) solutions
are similarly obtained from Eq. (26) as shown in Fig. 11.
The MV cubane-type Mn4 complex (32a) [51] and
adamantane-like Mn4 complex (35a) [52, 53] correspond
to these cases, respectively. In addition to these axial
solutions, the more general spin structures with a top-
type structure, 33 and 34, are possible for these species.
The top-type structure was indeed feasible for the 4Fe-
4S cluster; the optimized angles h12 and h14 are 119� and
102�, respectively, under the assumptions J [Fe(IV)-
Fe(IV)] � )80 cmÿ1 and J[Fe(IV)-Fe(III)] � )60 cmÿ1.
The Td spin structure is regarded as a special form of top
or cone; hij � 109�. For example, the cubane-type Mn4
complex (33) [54] has the negative J values satisfying this
condition.

In conclusion, the spin vector model provides simple
intuitive pictures for antiferromagnetic spin couplings
between the high-spin manganese ions in MnO systems.
The spin couplings are essentially determined by the
balance of the magnitudes of the negative Jab values for
the nearest-neighbour iron pairs in the systems, leading
to helical and general spin couplings [24, 25]. As shown
previously [17], the antiferromagnetic spin structures are
nothing but a VB representation of complex antiferro-
magnetic spin correlations in the clusters. This means
that the magnetic moment itself becomes zero after spin
rotation or spin projection, but the singlet-type spin
correlation still exists after the space and time average.
Recently many MnN oxide clusters (N � 7±12) have
been synthesized [40]. Their spin structures are explained
by combinations of axial, helical and more general spin
structures for small clusters in Fig. 9. Interestingly,
spin rotations are not free for these species because of
strong anisotropy, which determines an easy axis of spin
orientation.

5 Quantum dynamics of spins

5.1 Macroscopic quantum tunneling

Symmetry and broken symmetry become particularly
important in the ®eld of mesoscopic magnetic clusters
with strong anisotropy, which are indeed intermediate
between microscopic (quantum) and macroscopic (clas-
sical) particles. For example, MQT and/or MQC [9, 55]

have been the subject of much interest because of the
anisotropy barrier height. In fact, the manganese acetate
complex, Mn12O12�CH3COOH�16�H2O�4 �Mn12-Ac,
exhibited several characteristics of MQC and MQT
which were revealed by measurements of the ac magnetic
susceptibility, relaxation time, M-H curve, etc. [56±60].
Therefore, a theoretical study of the complex is partic-
ularly important to understand the nature of MQT and
MQC.

Judging from preceding results for the small Mn
clusters, many spin alignments are conceivable for the
ground state of Mn12-Ac, which contains four Mn(IV)
ions in the central distorted cubane surrounded by
eight Mn(III) ions. The low-spin helical spin alignment
with strong spin ¯ustration and high-spin axial spin
alignment are illustrated in Fig. 12. Magnetic suscep-
tibility measurements [57] have revealed that the
ground state of the typical Mn12-Ac complex is high
spin �S � 10�, though other types of this complex have
the S � 9 and S � 9:5 ground spin states [61]. The

Fig. 12A±F. Diagrams for Mn12-Ac. A and B illustrate helical and
axial spin structures in Mn12-Ac. C shows a typical dependence of
the quantum tunneling rate on the temperature in relation to the
macroscopic quantum tunneling and the crossover temperature
�T ��. Double-well potential for the spin states and a spin state
picture for the quantum tunneling rate are shown in D and E,
respectively. F depicts the spin crossover induced by the external
magnetic ®eld
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simulations of the magnetic data [57] using the Hei-
senberg model in Fig. 12 indicated three di�erent
ground states depending on J2 and J3 values under the
assumption that J1 � ÿ150 and J4 � 0 cmÿ1; (a) S � 8
(J2 � ÿ60 and J3 � ÿ60), (b) S � 0 (J2 � ÿ60 and
J3 � ÿ62:5) and (c) S � 10 (J2 � ÿ60 and J3 � ÿ57:5).
The energy di�erence between the low-spin �S � 0� and
the high-spin �S � 10� states is small. This result is not
at all surprising since many spin ¯ustrated structures
shown in Figs. 9±11 are conceivable in the Mn12-Ac
complex.

The Mn12-Ac complex can be treated as a single spin
�S � 10� object because of its low temperature property
[56±61]. Since the magnetic anisotropy is rather strong,
the magnetic moment M aligns in parallel and antipar-
allel manner along the easy axis as illustrated in
Fig. 13A. However, M can tunnel between the energy
minima, providing the in (+) and out-of-phase �ÿ�
states in Fig. 13B, where P denotes the tunneling matrix

element. The quantum average of the magnetic moment
hMi disappears in the resonating state, though
hM2i � S2 (S � size of spin). The time correlation
function S�t� of M oscillates with neglect of dissipation
because of the MQC e�ect [55]

S�t� � hM�t�M�t � Dt�i � S2 cos 2PDt : �29�
The Fourier transform of S�t� gives the S�x� value
�� d�xÿ xres��hxres � 2P�, which is related to the
imaginary part v00�x� of the frequency-dependent mag-
netic susceptibility through the ¯uctuation-dissipation
theorem. In fact, several experiments have con®rmed the
frequency-dependent peaks of v00�x� for polycrystalline
samples of the Mn12-Ac complex [56±61].

In the presence of an external magnetic ®eld, the
symmetry of the potential surface in Fig. 13A is broken,
and MQT from a metastable state to another state be-
comes essential. Here, model III in Ref. [55] is modi®ed

Fig. 13A±F. Double-well po-
tential for the spin states and
phase factor. A and B illustrate
a double-well potential for the
spin states in a mesoscopic
system and the quantum tun-
neling rate in relation to the
molecular orbital picture, re-
spectively. A vector model for a
magnetic moment and its total
potential energy curve V �h;u�
are shown in C and D, respec-
tively. E depicts a unsymmetri-
cal potential curve involving the
e�ect of an external magnetic
®eld. F illustrates a topological
diagram for the phase factor
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for our purpose. To this end, the anisotropy energy Eanis

and the interaction energy Eint between the spin and the
applied ®eld B are expressed using the polar coordinates
in Fig. 13C.

Eanis � ÿK
2

S2 cos2 h� kK
2

S2 sin2 h cos2 / �30�

Eint � ÿlBBS cos h �31�
Figure 13D illustrates the pro®le of the total potential
energy, V �h;/� � Eanis � Eint, which is approximately
expressed by the 1D form assumpting strong anisotropy
along the x-axis (k� 1 and then 2/ � p). Therefore the
resulting 1D potential V �h; p=2� � V �h�, is given by a
single parameter as

V �h� � K
2

S2 cos2 h� 2
B
Bc
�cos hÿ 1�

� �
�32a�

� K
2

S2 e2hÿ e4

4

� �
; �32b�

where the constant term is added so as to satisfy the
condition V �0� � 0 as illustrated in Fig. 13D. Bc is the
coercive ®eld given by KS=lB.

In order to compute the tunneling rate P in Eq. (29),
we consider the imaginary time transition amplitude
expressed as a coherent state path integral for spins
[25,27]

hpjeÿbH j0i �
Z

DXeÿSh ; �33�

where jpi and j0i denote the coherent states responsible
for up- and down-spin alignments. The Euclidean action
Sh is given by

Sh �
Z

ds
h2

Kk
� V �h�

� �
: �34�

The potential energy V �h� in Eq. (32a) is usually
expanded into a power series of h in Eq. 32(b), assuming
that B � Bc�1ÿ e��e� 1� to obtain the well-known
analytical (bounce) solution

h � hc�coshx0s�ÿ1 ; �35�
where hc � 2

��
e
p

and x0 � KS
�����
ke
p

. In the bounce solu-
tion, h varies from h � 0 at s � ÿ1 to hc � 0 at s � 0,
and then back to h � 0 at s � 1. The action Sh is also
given by, 16U

3x0
where U is the classical activation barrier in

Fig. 13D at hm �
�����
2e
p

. Thus, we obtain the tunneling
probability by the path integral method [25] as

P � x0 exp�ÿSh� � x0 exp ÿ 16U
3x0

� �
: �36�

Since the thermal transition probability Pth is given by
exp �ÿU=kT �, the crossover temperature �T �� from
thermal activation to quantum tunneling is given by
3x0=16k. This crossover phenomena was indeed observed
for the M12-Ac complex as illustrated in Fig. 12C, where
T � � 2K [60]. From Eq. (36), the frequency x0 should
become high to obtain higher T �, and therefore both the
anisotropy constant K and the size of the spin S are
required to increase by chemical modi®cations (see later).

In the above derivation, we did not consider the
topological term, which appears in the Euclidean
Lagrangian. Note that the action Sh;/ �

R
dsL in general

L � ÿihS _/�1ÿ cos h� � H�h;/� ; �37�
where the second term denotes the Hamiltonian for the
spin system, which is assumed not to involve the external
®eld; namely we consider the case in Fig. 13A, and then
obtain the so-called instanton solution as an analytical
solution [55]. The former term provides the phase factor,
exp��ipS� relating to the so-called winding number as
illustrated in Fig. 13F, where / is taken to be �p=2 [/ is
replaced by h in Eq. 30 (vice versa) to understand the
pole] [62]. This phase factor gives the boundary contri-
bution to Sh;/, and plays a crucial role in modifying the
transition probability P as

P (tunnel) � jcos�pS�jP : �38�
The phase factor j cos�pS�j represents an interference
between the instanton and antiinstanton contributions
to tunneling. If the spin is an integer, the interference is
constructive, and the total tunneling rate is of the order
P , but it is destructive for the half-integer spin, leading to
zero tunneling rate.

The exact quantum treatment is feasible for magnetic
clusters such as the Mn12-Ac complex [60]. The simplest
Hamiltonian is obtained from Eq. (32a) as

Ĥ � ÿDS2
z ÿ glBSzBz ; �39�

where D is the uniaxial anisotropy energy constant
which is expressed by K and k in Eq. (30), and Bz is the
applied magnetic ®eld (see Eq. 31). There are 21 Zeeman
sublevels �2S � 1 � 21 and 10 � m � ÿ10) for the
ground state of the Mn12-Ac complex as shown in
Fig. 13E. The two levels with S and �ÿS � n� become
degenerate in energy by changing the transverse ®eld Bz
as

ÿDS2
z ÿ glBSzBz � ÿD�nÿ Sz�2 ÿ glB�nÿ Sz�Bz : �40�

Then the resonance quantum tunneling between these
two states occurs at the applied ®eld Bz(resonance)
� ÿnD=glB; the phase factor in Eq. (38) should be also
considered for these states. The observed quantum jump
of the magnetization curve for the Mn12-Ac complex by
sweeping Bz can be explained by this tunneling mecha-
nism since the size of spin changes abruptly from S2 to
�S ÿ n�2 [60].

Very recently, the ac susceptibility v00�x� was ob-
served for the Mn(IV)Mn(III)3O3Cl complex with the
half-integer spin �S � 9=2��63�. The slow relaxation of
magnetization demonstrated a behavior of the single
molecule magnet, but the hysteresis curve has not yet
been recorded to allow Eq. 38 to be examined. Probably
several experiments will be performed in the near future
to con®rm the topological rule, though it is suppressed
by many relaxation e�ects. The experiments already
showed that the peak temperatures of v00�x� of the
manganese complexes are well correlated with the po-
tential energy barriers arising from the anisotropy [63].

A next step from the theoretical side is therefore the
design of new compounds which may exhibit MQC and
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MQT at high temperature. Since a large anisotropy
constant D and a large spin S, and topological factors
(integer or half-integer spin) are required for this pur-
pose, transition metal and rare-earth metal carcogenides
would be possible candidates. For example, clusters
of clusters will be interesting as shown in Fig. 15 (see
Sect. 6).

5.2 MQC for antiferromagnetic molecular magnets

We consider a simple model of two interacting spins of
the same size S [64]. The Heisenberg Hamiltonian is
given by

Ĥ � ÿfD1�Sz
1�2 � D2�Sz

2�2g ÿ 2 JS1 � S2

� ÿD�Sz�2 ÿ J�S2 ÿM2�=2 � ÿD�S2
z ÿ JS2� ;

�41�

where S �M1 ÿM2 andM �M1 �M2. D and J are the
anisotropy energy constant and e�ective exchange
integral, respectively. Since the mutual orientation of
M1 and M2 is opposite in the case of antiferromagnetic
spin alignment, M is essentially zero. On the other hand,
the Neel vector S is ®nite, and its direction given by h is
j0i � j "#i and jpi � j #"i in the local minimum of the
potential curve as illustrated in Fig. 12D. However, the
broken-symmetry con®guration j0i can tunnel across
the anisotropy barrier to the other con®guration jpi, and
the broken symmetry is recovered like the spin projec-
tion. Then the situation is quite similar to the case of a
ferromagnetic particle discussed earlier. The energy
splitting P is not negligible because of this tunneling as
shown in Fig. 12E. P is calculated by using the instanton
model as shown in Eq. (36), and the Euclidean action Sh
is given by C

���������
D=J

p
(C � const) [64]. Since jJ j is larger

than D in many transition metal oxides, the P value for
antiferromagnetic particles is usually larger than the
ferromagnetic P value. Therefore, molecular magnets
with antiferromagnetic exchange interactions are inter-
esting from this point of view. This is the reason why we
examined the antiferromagnetic couplers reported in
Sect. 3.

5.3 Magnetic ®eld induced spin transitions

The magnetic ®eld induced transition from the ground
singlet state to the lower-lying high-spin state is an
interesting subject, particularly in the case of antiferro-
magnetic molecular magnets as illustrated in Fig. 12F. In
fact, such transitions were observed for several transition
metal complexes such as the Fe10 complex [65]. We have
performed ab initio PIMC simulations using UNO for
simple biradical systems [25, 27, 66] as a model of the Fe
complex. The ab initio UNO PIMC method certainly
indicated the sharp transition of magnetization, which
was responsible for the singlet to triplet transition under
an applied magnetic ®eld.

We have considered single or two-spin systems for
simplicity. However, more realistic spin Hamiltonians
constructed of each spin at the transition metal ions are
necessary to investigate magnetic behavior at high tem-
perature.

Ĥ �ÿ
X
a;b

2 JabSz
aSz

b ÿ
X

a

Da�Sz
a�2 ÿ

X
a

CaS�a

ÿ glB

X
a

Sz
aBz � HSB �42�

where a�b� denotes the site of the magnetic ion. The
dissipation term HSB expresses the couplings of spins with
many other freedoms such as phonon, etc. For example,
HSB is given by the so-called spin-boson model as

ĤSB � ÿ
X

a

ja�S�a b� Sÿa b�� � lb�b �43�

where b�b�� denotes the boson [67]. The population and
phase relaxation processes will be investigated by the
quantum similation methods developed recently. The
model Hamiltonian can be regarded as an extended
Jaynes±Cummings model [68], where the boson is
regarded as a photon, l � hx. Several common interests
exist in the ®elds of quantum dynamics of spins and
quantum optics, which are not touched on in this article;
a comprehensive review of our theoretical results
relating to the latter topics is given in Ref. [69]. On the
other hand, the localized spin interactions with ferm-
ionic baths constructed of conducting electrons are
described by a generalized Kondo model [36], which has
also become important because of recent synthetic
e�orts toward organic and organometallic Kondo
systems [70].

6 Future prospects and concluding remarks

6.1 Symmetry breaking in the native cluster

The electronic structures of manganese oxides, iron
oxides and iron-sulfur clusters in active sites of enzymes
are often described by the broken-symmetry HF or
density functional solutions [7, 42, 71±73]. Magnetic
Mossbauer EPR and NMR spectroscopies have been
applied to describe the magnetic properties and chemical
bonds of these species. For example, some of the
theoretical and experimental results for the iron-sulfur
clusters [74±76] are summarized in Table 3. The UHF or
spin-polarized DFT methods provide axial spin struc-
ture 13 for the 3Fe-4S cluster and structures 28 and 32
for the 4Fe-4S cluster. The more general HF (GHF)
solutions are necessary for MO theoretical descriptions
of helical-type (15), cone- or tetrahedral-type (31) and
top-type (33) structures.

The 4Fe-4S cluster in native ferredoxin [75] is prob-
ably a typical example for explanation of symmetry
breaking and spin ¯ustration. The DFT calculation
of the MV core [Fe(2.5)2Fe(3)S4]

3� assuming the anti-
ferromagnetic exchange coupling between the high-
spin 2Fe-2S clusters, [Fe(3)2S2]

2� �S12 � 10=2� and
[Fe(2.5)2S2]

1� �S34 � 9=2� was already reported [73].
This axial doublet structure (28) is compatible with the
experimental result �ST � 1=2� for the synthetic 4Fe-4S
cluster [71]. However, the NMR experiments indicated
that the MV fragment [Fe(2.5)2S2]

1� should have a
larger spin moment than the other fragment [Fe(3)2S2]

2�
in the case of the native 4Fe-4S cluster in ferredoxin [72].
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The total doublet state should be described by
�S12; S34; ST� � �8=2;ÿ9=2;ÿ1=2�; �6=2;ÿ7=2;ÿ1=2�, or
the linear combination of the two con®gurations; these
are expressed by the cone-type (31) spin structure. Thus
the native 4Fe-4S cluster has an unsymmetrical biological
environment, which stabilizes this unique (broken-
symmetry) chemical bond.

The removal of the Fe(2) component from [Fe4S4]
3�

cluster generates the 3Fe-4S cluster [Fe(3)3S4]
1� with the

triangular spin alignment (15) as illustrated in Fig. 14.
Judging from the spin structures, this reaction should

proceed smoothly without an abrupt change of antifer-
romagnetic spin couplings. The reductions of
[Fe(3)3S4]

1� to [Fe(3)3S4]
0 and [Fe(3)3S4]

1ÿ provide
the axial structures 13 �ST � 2� and 13 �ST � 5=2�,
respectively. On the other hand, the electron capture of
the oxidized 4Fe-4S cluster gives the MV cluster
[Fe(2.5)4S4]

2�, which is expressed by the Td spin struc-
ture (31) as illustrated in Fig. 14. This implies that the
antiferromagnetic spin coupling in the oxidized form
does not change drastically upon one-electron reduction.
Such smooth change of the chemical bonding may be

Table 3. Structure oxidation
state and spin properties of
iron-sulfur clusters

System Spin coupling MO Spin structure Experiment

[Fe(3)3S4]
1+ 13 (10/2, )5/2,5/2) UHF(DFT) axial

(S12,S3,ST) 15 (8/2, )5/2, 3/2) GHF helical
15 (6/2, )5/2, 1/2) GHF triangular ST=1/2

[Fe(2.5)2Fe(3)S4]
0 13 (9/2, )5/2, 2) UHF(DFT) axial ST=2

(S12,S3,ST) 15 (7/2, )5/2, 1) GHF helical
[Fe(2.5)2Fe(3)S4]

1) 13 (9/2, )4/2, 5/2) UHF(DFT) axial ST=5/2
(S12,S3,ST) 15 (7/2, )4/2, 3/2) GHF helical
[Fe(3)2Fe(2.5)2S4]

3+ 28 (10/2, )9/2, 1/2) UHF(DFT) axial
(S12,S34,ST) 31 (8/2, )9/2, )1/2) GHF cone ST=1/2

31 (6/2, )7/2, )1/2) GHF cone ST=1/2
[Fe(2.5)3Fe(2.5)S4]

2+ 28 (9/2, )9/2, 0) UHF(DFT) axial
(S12,S34,ST) 31 (7/2, )7/2, 0) GHF Td ST=0

31 (5/2, )5/2,0) GHF Td ST=0
[Fe(2)3Fe(3)S4]

1+ 32 (12/2, )5/2, 7/2) UHF(DFT) axial ST=7/2
(S123,S4,ST) 33 (10/2, )5/2, 5/2) GHF top ST=5/2

33 (8/2, )5/2, 3/2) GHF top ST=3/2
33(6/2, )5/2, 1/2) GHF top ST=1/2

[Fe(2.5)2Fe(2)S4]
+1 28 (9/2, )8/2, 1/2) UHF(DFT) axial ST=1/2

(S12,S34,ST) 31 (7/2, )8/2, )1/2) GHF cone ST=1/2
31 (9/2, )6/2, 3/2) GHF cone ST=3/2

[Fe(2.5)2Fe(3)Co(2)]
2+ 28 (9/2, )8/2, 1/2) UHF(DFT) axial ST=1/2

[Fe(2.5)2Fe(2)C0(2)]
1+ 28 (9/2, )7/2, 2/2) UHF(DFT) axial ST=2/2

Fig. 14. Spin structures of the
native 3Fe-4S and 4Fe-4S clus-
ters in ferredoxins and varia-
tions of the structures with
electron transfers
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true for the reduction of [Fe(2.5)4S4]
2� to [Fe(2)3

Fe(3)S4]
1�, which is expressed by the top-type spin

structure (33). The axial- (28) and cone-type (31) struc-
tures are also conceivable for the reduced cluster
[Fe(2.5)2Fe(2)2S4]

1� if the MV fragment [Fe(2.5)2S2]
1� is

formed by electron capture. Several ground states with
ST � 1=2, 3/2, 5/2 and 7/2 were identi®ed experimentally
for the [Fe4S4]

1� core, depending on the molecular
structures and environmental e�ects in the native fe-
rredoxins. The metal-substituted cores [Fe(2.5)2:5
Fe�p�MS4] (p � 2 or 3; M = Co2�, Mo3�, etc) have the
axial structures (28) as shown in Table 3.

The above examples clearly show that magnetism and
chemical bonds in the active sites of native ferredoxins
can be regulated by the oxidation numbers and subtle
changes of environment. This in turn allows active
control of electronic structures by relatively weak inter-
actions with external ®elds such as hydrogen bonding.
We feel that such softness arising from the instability of
the chemical bonds is a characteristic of these species
and other active sites; for example the manganese oxide
clusters in the water-oxidation site of the photosynthesis
II system [71] and iron oxides in several oxygenation
enzymes [4]. Our results indicate that MO theoretical
models permitting 3D broken symmetries in Fig. 2 are
inevitable even for qualitative descriptions of such labile
chemical bonds.

6.2 Models of quantum wire and ring of spins

The three-centered units in Fig. 4 can be used as building
blocks for molecular magnetic materials. Many kinds of
radical centers are conceivable in 1. Here we have
examined the linear magnetic chains of the methyl
radical with sulfur and oxygen couplers, which have
antiferromagnetic exchange interactions. Judging from
the negative sign of the Jab values, many other antifer-
romagnetic chains are feasible as illustrated in Fig. 15.
These species are regarded as the quantum wire of spins
from the viewpoint of the magnetic ®eld induced spin
transitions. The quantum rings of spins are similarly
constructed of these units to avoid the edge e�ects. The
anisotropy e�ects for these organic clusters are very
weak. Then these are regarded as pure antiferromagnetic
Heisenberg systems, which are interesting regarding the
Haldane problem [77,78].

On the other hand, transition metal ions and rare-
earth metals can also be used as spin sources in the wire
and rings, which exhibit strong anisotropy e�ects like the
Mn12-Ac complex. For example, the Mn clusters in Fig.
9 can be used as potential building blocks of clusters of
clusters with large S and D as illustrated in Fig. 15. We
have tried to synthesize a linear chain (about 13 units) of
4Fe-4S clusters using the metaphenylene bissul®de unit,
but it was not isolated to characterize the magnetic
property. The development of appropriate synthetic
methods will probably be necessary for the synthesis of
well-de®ned giant clusters. Many interesting phenomena
should be found in such mesoscopic systems which exist
in the crossover region between quantum and classical
mechanics.

6.3 Superconductivity via electron and spin correlations

In the past decade magnetism and electron correlation
have attracted much interest in relation to high-temper-
ature superconductivity in copper oxide. Many experi-
mental and theoretical e�orts have been made to
elucidate the possible interplay between p and d
electrons of transition metal oxides in an intermediate
or strong electron-correlation regime [14, 36]. Over 10
years ago we presented ab initio molecular orbital
calculations of e�ective exchange integrals in the Hei-
senberg model for transition metal oxo compounds [4].
It was shown that the magnitude of Jab for the copper
oxide unit is abnormally large compared with other
transition metal oxo units in Fig. 4. After the discovery
of high-temperature superconductivity for doped copper
oxide, we immediately applied the calculated Jab values
to the estimation of the critical temperature Tc assuming
a spin ¯uctuation model: Tc � CJab [34]. C is a constant
whose explicit expressions are dependent on the theo-
retical models employed. Our theoretical hypothesis is

Fig. 15. Molecular design of linear (A, C) and ring (B, D)
olygomers composed of organic and inorganic units, and possible
spin structure for C36 E. F denotes the spin ¯ip by the photon mode
and the detection of it by EPR for quantum computing
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that a big Jab may play an important role in possible
spin-mediated superconductivity [34, 36].

During the past decade, we have been interested in
the design and investigation of possible organic and
organometallic analogs to copper oxides from the
viewpoint of spin-mediated superconductivity. Since the
spin ¯ustration is remarkable in the fullerene com-
pounds with C5 units in Fig. 8, we may expect high-
temperature Tc superconductivity for speci®c fullerene
systems with strong spin ¯ustration, though phonon
freedom plays an important role in the case of super-
conductivity of C60 alkali systems. Very recently, C36

with D6h symmetry was discovered as shown in Fig. 15E.
The belt composed of the six-membered rings is antiar-
omatic, indicating that C36 would accept two electrons,
becoming aromatic. The excess electrons coupled with
spin ¯ustration of the C5 units may exhibit high-tem-
perature superconductivity via the electron correlation
mechanism, where both charge and spin ¯uctuations are
important [14,36]. The nonalternant hydrocarbon units
in Fig. 8 are interesting as building blocks for large spin
¯ustration systems.

6.4 Molecular magnetic device

Recently many theoretical and experimental studies have
been carried out for new models of computation; DNA,
quantum and reversible computers. Single-molecule
magnets such as the Mn12-Ac complex [56±60] have
received much interest in relation to a quantum com-
puter, which utilizes the entanglement and superposition
principle in quantum mechanics for parallel computa-
tion. Feynmann [79] ®rst pointed out e�ects of the
quantum mechanical phenomena on computation. He
argued why this behavior might make it intrinsically
computationally expensive to simulate quantum me-
chanics on a classical computer. By using quantum
mechanics in computing, we compute more e�ciently
than with a classical computer. Benino� [80] showed
that a Turing machine could be simulated by the unitary
evolution of a quantum process, which is a necessary
prerequisite for quantum computation. Deutsch [81, 82]
gave an explicit model of quantum computation. He
de®ned both quantum Turing machines and quantum
circuits and investigated some of their properties.
Landauer and Bennett [83, 84] investigated what e�ect
arises from the miniaturization of computational cir-
cuits. When the circuit is miniaturized, it is found that
the character is governed by quantum theory.

Quantum mechanical computing was already carried
out by using NMR quantum computing, since the de-
coherence e�ect was not serious in the nuclear spin
systems [85]. We similarly expect that quantum com-
puting in terms of various single molecular magnets by
controling the spins with the external magnetic ®eld [86]
or with the photon modes [87, 88] (see Fig. 15F) will be
performed in the future, since EPR can read the output
information. However, there are several problems such
as quantum relaxations, decoherence, etc, to be over-
come to realize the application of singl-molecule mag-
nets in a molecular device for a quantum computer.

Apparently much experimental and theoretical e�ort is
necessary to overcome such problems. This in turn
promotes deep understanding of mesoscopic systems.
The quantum simulations of the magnetic ®eld induced
spin transitions [66] and nonlinear optical responses [69]
of molecular materials are our ®rst step [66] toward a
goal. In conclusion, concepts of the symmetry and bro-
ken symmetry in space-spin variables play important
roles for theoretical understanding and rationalization
of several interesting phenomena, which are realized in
mesoscopic molecular materials in the intersection area
between quantum and classical mechanics.
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